
Equivalent of memset:
upc_memset(dst, char, size)
 assign a block of characters to shared memory

Locks

// Dynamic lock collectively allocated
{
 upc_lock_t *l;
 l = upc_all_lock_alloc();

 //…
 upc_lock(l);
 // protected section
 upc_unlock(l);

 if(upc_lock_attempt(l))
 {
 // do something if l currently unlocked
 }

 // unallocates the lock
 if(MYTHREAD == 0)
 upc_lock_free(l);
}

{
 // Dynamic lock globally allocated
 upc_lock_t *l;
 if(MYTHREAD == 3)
 l = upc_global_lock_alloc();
}

General utilities

Terminate the UPC program with exit status status :

801 22nd street NW, Washington DC 20052

Keywords

THREADS: Total number of threads
MYTHREAD: Identification number of the current thread
(between 0 and THREADS-1)
UPC_MAX_BLOCK_SIZE: Maximum block size allowed by
the compilation environment

Shared variable declarations
Shared objects

Shared variables are declared using the type qualifier “shared”.
Shared objects must be declared statically (that is, either as
global variables or with the keyword static).

Examples of shared object declaration:

shared int i;

shared int b[100*THREADS];

The following will not compile if you do not specify the num-
ber of threads:
shared int a[100];

All the elements of a are allocated in thread 0:
shared [] int a[100];

Distribute the elements in a round robin fashion by chunks of 2
elements: a[0] and a[1] are allocated in thread 0; a[2]
and a[3] in thread 1 …:
shared [2] int a[100];

Shared pointers

Pointer to shared object:
shared int* p;

Shared pointer to shared object:
shared int* shared sp;

UPC QUICK REFERENCE CARD

Work sharing

The iteration distribution follows the distribution layout of a:
upc_forall(i=0; i<N; i++; &a[i])

Distributes the iterations in a round-robin fashion with wrap-
ping from the last thread to the first thread:
upc_forall(i=0; i<N; i++; i)

Distribute the iterations by consecutive chunks:
upc_forall(i=0; i<N; i++; i*THREADS/N)

Synchronization
Memory consistency

These include files set which consistency model, strict or
relaxed, is used for the whole program.
#include “upc_strict.h” or “upc_relaxed.h”

Sets strict memory consistency for the rest of the file:
#pragma upc strict
Sets relaxed memory consistency for the rest of the file:
#pragma upc relaxed

All accesses to i are made using the relaxed consistency
model:
shared relaxed int i;
All accesses to i are made using the relaxed consistency
model:
relaxed shared int i;
All accesses to i are made using the strict consistency model:
strict shared int i;

Synchronize locally the shared memory accesses; it is
equivalent to a null strict reference.
upc_fence;

Barriers

Globally synchronize the program:
upc_barrier value;
value is an optional integer.

// Before the barrier
upc_notify value;
value is an optional integer.

// Non-synchronized statements relative to this on-going
barrier
upc_wait [value];
value is an optional integer.
// After the barrier

Library routines

upc_threadof(p) : thread having affinity to the location
pointed by p
upc_phaseof(p) : phase associated with the location
pointed by p
upc_resetphase(p) : shared address with the phase set to
zero pointed by p
upc_addrfield(p) : address field associated with the
location pointed by p
upc_localsizeof(p) : size of the local portion pointed
by p
upc_blocksizeof(p) : blocking factor associated with
object pointed by p
upc_elemsizeof(p) : size of the left-most type of object
pointed by p

Dynamic memory allocation

Three different memory allocation methods are provided by
UPC:

upc_alloc(n): allocates at least n bytes of shared space
with affinity to the calling thread . It needs to be called by one
thread only.

upc_global_alloc(n, b): globally allocates nxb bytes
of shared data distributed across the threads with a block size
of b bytes. It is intended to be called by one thread only.

upc_all_alloc(n, b): collectively allocates nxb bytes
of shared data distributed across the threads with a block size
of b bytes. It is intended to be called by all the threads.

upc_free(p): frees shared memory pointed to by p from
the heap.

String functions in UPC

Equivalent of memcpy :

upc_memcpy(dst, src, size)
 copy from shared memory to shared memory
upc_memput(dst, src, size)
 copy from private memory to shared memory
upc_memget(dst, src, size)
 copy from shared memory to private memory

