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Outline of this Talk

Basic Concepts

— Applications

— Programming Models
— Computer Systems

The Program View

The Memory View
Synchronization

» Performance AND Ease of Use
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Parallel Programming Models

* What is aprogramming model?
— A view of data and execution
— Where architecture and applications meet

* Best when a*“contract”
— Everyone knows the rules
— Performance considerations important
» Benefits
— Application - independence from architecture
— Architecture - independence from applications
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The Message Passing Model

Programmers control data and
work distribution

Explicit communication

Significant communication
overhead for small transactions

Example: MPI

I:] Address space
O Process
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The Data Parallel Model

» Easy to write and
comprehend, no
synchronization required

* No independent branching

Different Data/ address spaces
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The Shared Memory Model

Simple statements
— read remote memory viaan

expression

B Shared Variable x

Shared addr ess space

— write remote memory through
assignment
* Manipulating shared data
may reguire synchronization

$C2001
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* Doesnot alow locality
exploitation

* Example: OpenMP

Programming With the Distributed
Shared-Memory Model

The Distributed Shared Memory

M odel

Similar to the shared

One
partitioned

shared
address
space

Mo | M,

M,

PR PP

M

memory paradigm
* Memory M; has affinity
Ma to thread Th,
» Helps exploiting locality
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of references
* Simple statements
» Examples: This Tutorial!

Programming With the Distributed
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Tutorial Emphasis

» Concentrate on Distributed Shared Memory
Programming as a universal model
— UPC
— Co-Array Fortran
— Titanium
* Not too much on hardware or software
support for DSM after thistalk...
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How to share an SMP

 Pretty easy - just map
— Datato memory

— Threads of computation to
* Pthreads
* Processes

* NUMA vs. UMA
» Single processor isjust avirtualized SMP
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11/12/01 Shared-Memory Model

10




How to share aDSM

* Hardware models
— Cray T3D/T3E
— Quadrics
— InfiniBand

» Message passing
—1BM SP (LAPI)
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How to share a Cluster

 What isacluster
— Multiple Computer/Operating System
— Network (dedicated)
» Sharing Mechanisms
— TCP/IP Networks
— VIA/InfiniBand
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Some Simple Application
Concepts

* Minimal Sharing

— Asynchronous work dispatch
* Moderate Sharing

— Physical systems/ “Halo Exchange”
* Major Sharing

— The“don’t care, just do it” model

— May have performance problems on some
system
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History

» Many data parallel languages

» Spontaneous new idea: “global/shared”
— Split-C -- Berkeley (Active Messages)
—AC -- IDA (T3D)

— F-- -- Cray/SGI
— PC++ -- Indiana
— CC++ -- 18l
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Related Work

e BSP -- Bulk Synchronous Protocol
— Alternating compute-communicate

» Global Arrays
— Toolkit approach
— Includes locality concepts
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Model: Program View

Single “program”

Multiple threads of control

Low degree of virtualization

|dentity discovery

Static vs. Dynamic thread multiplicity
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Model: Memory View

e “Shared” area

e “Private’ area

» References and pointers
— Only “local” thread may reference private
— Any thread may reference/point to shared

SC2001 Programming With the Distributed
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Model: Memory Pointers and

Allocation
* A pointer may be
— private
— shared
A pointer may point to:
— local
— global

Need to allocate both private and shared
Bootstrapping
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Model: Program Synchronization

e Controlsrelative execution of threads

» Barrier concepts
— Simple: al stop until everyone arrives
— Sub-group barriers
 Other synchronization techniques
— Loop based work sharing
— Pardlel control libraries
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Model: Memory Consistency

» Necessary to define semantics

— When are “accesses’ “visible’?

— What isrelation to other synchronization?
 Ordering

— Thread A does two stores
» Can thread B see second before first?
* Isthis good or bad?

SC2001 Programming With the Distributed
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Model: Memory Consistency

» Ordering Constraints

— Necessary for memory based synchronization
* lock variables
* semaphores
— Global vs. Local constraints
* Fences

— Explicit ordering pointsin memory stream
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Performance AND Ease of Use

Why explicit message passing is often bad
Contributors to performance under DSM
Some optimizations that are possible
Some implementation strategies
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Why not a Message Passing
Model

Message passing as a mechanismis great
In some cases it is agood match

— DNS (or “the net” application)

Currently the most portable

Many applications don’t map so well
— Math/Science apps
— Data Mining
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Contributors to Performance

» Match between architecture and model

— If match is poor, performance can suffer greatly
* Try to send single word messages on Ethernet
 Try for full memory bandwidth with message passing
» Match between application and model

— If model istoo strict, hard to express
» Try to expressalinked list in data parallel
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Architecture « Moddl Issues

» Make model match many architectures
— Distributed
— Shared
— Non-Parallel
* No machine-specific models
* Promote performance potential of all
— Marketplace will work out value
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Application = Model Issues

 Start with an expressive model
— Many applications
— User productivity/debugging
 Performance
— Don’'t make model too abstract
— Allow annotation
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Just a few optimizations possible

» Reference combining
e Compiler/runtime directed caching
» Remote memory operations

SC2001 Programming With the Distributed
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|mplementation Strategies

» Hardware sharing
— Map threads onto processors
— Use existing sharing mechanisms
 Software sharing
— Map threads to pthreads or processes
— Use aruntime layer to communicate
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Conclusions

» Using distributed shared memory is good
e Questions?
* Enjoy therest of the tutorial
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Programming in UPC

Tarek El-Ghazawi

The George Washington University
tarek@seas.gwu.edu
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UPC Outline

1. Background and 8. Synchronization
Philosophy 9. Performance

2. UPC Execution Mode Tuning and Early

3. UPC Memory Model Results

4. UPC: A Quick Intro 10. Concluding

5. Dataand Pointers Remarks

6. Dynamic Memory
M anagement

7. Programming Examples
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What isUPC?

» Unified Paralel C
* Anexplicit parallel extension of ANSI C

» A distributed shared memory parallel
programming language
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Design Philosophy

» Similar to the C language philosophy
— Programmers are clever and careful

— Programmers can get close to hardware
* to get performance, but
e cangetintrouble

— Concise and efficient syntax

e Common and familiar syntax and semantics for
parallel C with smple extensionsto ANSI C

SC2001 Programming With the Distributed
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Road Map

» Start with C, the other proven language besides
FORTRAN

» Keep al powerful C concepts and features

* Add paralleism, learn from Split-C, AC, PCP, etc.

* Integrate user community experience and
experimental performance observations

* Integrate developer’s expertise from vendors,
government, and academia

[1 UPC!
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History

* Initial Tech. Report from IDA in collaboration
with LLNL and UCB in May 1999.

» UPC consortium of government, academia, and
HPC vendors coordinated by GWU, IDA, DoD

» The participants currently are: ARSC, Compaq,
CSC, Cray Inc., Etnus, GMU, HP, IBM, IDA
CSC, Intrepid Technologies, LBNL, LLNL, MTU,
NSA, SGI, Sun Microsystems, UCB, US DoD, US
DoE

Programming With the Distributed
Shared-Memory Model
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Status

Specification v1.0 completed February of 2001
Benchmark, UPC_Bench, v1.0prel

Testing suite v1.0

2-Day Course offered in the US and abroad
Research Exhibits at SC 2000 and SC 2001[R547]
UPC web site: upc.gwu.edu

UPC Book by SC 2002?

Programming With the Distributed
Shared-Memory Model
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Har dwar e Platfor ms

» UPC implementations are available for

— Cray T3D/E
— Compaqg AlphaServer SC
— SGI 0 2000
» Ongoing and future implementations for:
— HP
— Sun multiprocessors
— Cray SV-2
— IBM

— Beowulf Clusters

1 Programming With the Distributed
Shared-Memory Model
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7.

UPC Outline
Background and 8. Synchronization
Philosophy 9. Performance
UPC Execution M odel Tuning and Early
UPC Memory Model Results
UPC: A Quick Intro 10. Concluding
Data and Pointers Remarks
Dynamic Memory
M anagement
Programming Examples
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UPC Execution M odel

» A number of threads working independently

« MY THREAD specifies thread index
(0..THREADS-1)

* Number of threads specified at compile-time
or run-time

 Synchronization when needed
—Barriers
—Locks
—Memory consistency control

SC2001 Programming With the Distributed
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UPC Outline
Background and 8. Synchronization
Philosophy 9. Performance
UPC Execution M odel Tuning and Early
UPC Memory Model Results
UPC: A Quick Intro 10. Concluding
Data and Pointers Remarks
Dynamic Memory
M anagement
Programming Examples
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UPC Memory Model

Thread

Thread 1
Thread 0 rea THREADS-1

Shared

Global address space

Private 0] Private 1 o0 Private
THREADS-1

*A shared pointer can reference all locationsin the shared
space

*A private pointer may reference only addressesin its
private space or addresses in its portion of the shared space
«Static and dynamic memory allocations are supported for
both shared and private memory

SC2001 Programming With the Distributed
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Usar’'s General View

A collection of threads operating in asingle
global address space, which islogically
partitioned among threads. Each thread has
affinity with a portion of the globally shared
address space. Each thread hasalso a private
space.

SC2001 Programming With the Distributed
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UPC Outline

1. Background and 8. Synchronization
Philosophy 9. Performance

2. UPC Execution Mode Tuning and Early

3. UPC Memory Model Results

4. UPC: A Quick Intro 10. Concluding

5. Dataand Pointers Remarks

6. Dynamic Memory
M anagement

7. Programming Examples
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A First Example: Vector addition

/Ivect_add.c

#include <upc_relaxed.h>
#define N 100* THREADS

shared int V1[N], v2[N], viplusv2[N];
void main(){
inti;
for(i=0; i<N; i++)
If (MYTHREAD==1%THREADS)
viplusv2[i]=vi[i]+v2[i];
}

SC2001 Programming With the Distributed
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2nd Example: Vector Addition

with upc_forall
/Ivect_add.c

#include <upc_relaxed.h>
#define N 100* THREADS

shared int V1[N], v2[N], viplusv2[N];

void main()
{
inti;
upc_foral(i=0; i<N; i++; i)
viplusv2[i]=v1[i]+v2[i];

SC2001 } Programming With the Distributed
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Compiling and Running
on Cray

e Cray
— To compile with afixed number (4) of threads:
¢ upc —02 —fthreads-4 —o vect_add vect_add.c
— Torun:
 Jvect_add

SC2001 Programming With the Distributed
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Compiling and Running
on Compaq

« Compaq
— To compile with afixed number of threads and run:
* upc —02 —fthreads 4 —o vect_add vect_add.c
* prun ./vect_add

— To compile without specifying a number of threads and
run:

 upc —0O2 —o vect_add vect_add.c
e prun—n4 ./vect_add

SC2001 Programming With the Distributed
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UPC DATA:

Shared Scalar and Array Data

» The shared qualifier, anew qualifier
» Shared array elements and blocks can be
spread across the threads
shared int X[ THREADS] one element per thread */
shared int y[10][THREADS] /10 eements per thread */
 Scalar data declarations
shared int a; /oneitem on system (affinity to thread 0) */

int b, I* one private b at each thread */

SC2001 Programming With the Distributed
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UPC Pointers

 Pointer declaration:
shared int *p;
e pisapointerto
an integer residing in the shared memory
space.

e piscalled ashared pointer.

SC2001 Programming With the Distributed
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Shared Pointers.A Third Example

» #include <upc_relaxed.h>
#define N 100* THREADS

shared int vV1[N], v2[N], viplusv2[N];
void main()

inti;
shared int *pl, *p2;

pl=v1; p2=v2,
upc_forall(i=0; i<N; i++, pl++, p2++; i)
viplusv2[i]=*pl+*p2;

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

50

25



Synchronization - Barriers

* No implicit synchronization among the threads
» Among the synchronization mechanisms offered
by UPC are:
— Barriers (Blocking)
— Split Phase Barriers
— Locks

SC2001 Programming With the Distributed
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Work Sharing with upc_forall()

* Distributes independent iterations
» Each thread gets a bunch of iterations
o Affinity (expression) field to distribute work
» Simple C-like syntax and semantics
upc_forall(init; test; loop; expression)
statement;

SC2001 Programming With the Distributed
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Example 4. UPC Matrix-

Vector Multiplication- Default
Distribution

I vect_mat_mult.c
#include <upc_relaxed.h>

shared int f THREADS][THREADS], c[THREADS];
shared int [ THREADS];

void main (void) {
inti,j,l;

upc_forall(i =0; i <THREADS; i++; i) {
c[i] =0;
for (1I=0; 1< THREADS; |++)
cfi] +=a[i][l]*b[I];

SC2001 Programming With the Distributed
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A Better Data Distribution

SC2001 Programming With the Distributed
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Example 5. UPC Matrix-

Vector Multiplication-- The
Better Distribution

I vect_mat_mult.c
#include <upc_relaxed.h>

shared [THREADS] int a)] THREADS][THREADS];
shared int b[THREADS], [ THREADS];

void main (void) {
inti,j,l;

upc forall(i=0;i <THREADS; i++; i) {
c[i]=0;
for (I1=0; I<KTHREADS; |++)
cfi] +=a[i][l]*b[I];

}

SC2001 Programming With the Distributed
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UPC Outline

1. Background and 8. Synchronization
Philosophy . 9. Performance
2. UPC Execution Mod€ Tuning and Early
3. UPC Memory M odel Results
4, UPC: A chk Intro 10. Concluding
5. Data, Pointers, and Remarks
Work Sharing
6. Dynamic Memory
M anagement
7. Programming Examples
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Shared and Private Data
Examples of Shared and Private Data L ayout:
Assume THREADS =3
shared int X; /*x will be aligned with thread 0 */
shared int Y THREADS];
int z
will result in the layourt:
Thread O Thread 1 Thread 2
I e -
i i |

11/12/01 Shared-Memory Model
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Shared and Private Data

shared int A[4][THREADS];

will result in the following data layout:

Thread O Thread 1 Thread 2
A[0][0] A[0][1] Al0][2]
A[1][0] A[1][1] A[1][2]
Al2][0] A[2][1] Al2][2]
A[3][0] A[3][1] Al3][2]
SC2001 Programming With the Distributed
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Shared and Private Data

shared int A[2][2* THREADS]:

will result in the following data layout:

Thread O Thread 1 0o Thread (tHreaps 1)
A[0][0] AL0][1] 000 A[O][THREADS-1]
A[O][THREADS] A[O][THREADS+]] A[0][2* THREADS-1]
A[1][0] AL A[1][THREADS-1]
A[1][THREADS] A[1][THREADS+1] A[1][2* THREADS-1]
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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Blocking of Shared Arrays

» Default block sizeis1

» Shared arrays can be distributed on a block
per thread basis, round robin, with arbitrary
block sizes.

» A block sizeis specified in the declaration
asfollows:
— shared [block-size] array[N];
— e.g.: shared [4] int a[16];

SC2001 Programming With the Distributed
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Blocking of Shared Arrays

» Block size and THREADS determine
affinity

e The term affinity meansin which thread’s
local shared-memory space, a shared data
item will reside

» Element i of ablocked array has affinity to
thread:

J T Dhod THREADS
%Iocksze E

SC2001 Programming With the Distributed
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Shared and Private Data

Shared objects placed in memory based on
affinity

Affinity can be also defined based on the
ability of athread to refer to an object by a
private pointer

All non-array scalar shared qualified objects
have affinity with thread O

Threads access shared and private data

SC2001 Programming With the Distributed
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Shared and Private Data
Assume THREADS =4

shared [3] int A[4][THREADS];

will result in the following data layout:

Thread O Thread 1 Thread 2 Thread 3
A[Q][0] A[Q][3] A[1][2] Al2][1]
A[0][1] A[1][0] A[1][3] A[2][2]
A[0][2] A[1][1] A[2][0] A[2][3]
A[3][0] A[3][3]

A[3][1]
A[3][2]

SC200 Programming With the Distributed
11/12/01 Shared-Memory Model
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Spaces and Parsing of
the Shared Type Qualifier: as

Alwaysin C Spacing Does Not M atter!
Optional separator

int sharedi[...] arrayl[...];
|

LN
Type qualifier
Layout qualifier
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 65

UPC Pointers

Where does the pointer reside?

Private Shared

Private PP PS

Where
doesit

point? Shared SpP SS

SC2001 Programming With the Distributed
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UPC Pointers

* How to declare them?

— int*pl; [* private pointer pointing locally */

— shared int *p2; [* private pointer pointing into the
shared space */

— int *shared p3; [* shared pointer pointing locally */

shared int *shared p4; [* shared pointer pointing into the

shared space */

» Asaconvention, “shared pointer” means a pointer pointing
to ashared object. It generally means an equivalent of p2

but could be p4.
SC2001 Programming With the Distributed
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UPC Pointers
Thread O
cee ] ooe
Shared Pe .
= I I
: b o, P e
Private &] ' &] ' ﬁ P,
SC2001 Programming With the Distributed
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UPC Pointers

» What are the common usages?

— int*pl; [* accessto private data */
— shared int *p2; [* access of local thread to datain
shared space */
— int *shared p3; /* not recommended™*/
— sharedint *shared p4; I* access of all threads to datain the
shared space*/
$C2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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UPC Pointers

* InUPC for Cray T3E , pointersto shared
objects have three fields:

— thread number

— local address of block

— phase (specifies position in the block)
o Example: Cray T3E implementation

Phase Thread Virtual Address
63 49 48 38 37 0

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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UPC Pointers

* Pointer arithmetic supports blocked and non-
blocked array distributions

» Casting of shared to private pointersis allowed but
not viceversa!

* When casting a shared pointer to a private pointer,
the thread number of the shared pointer may be
lost

» Casting of shared to private iswell defined only if

the shared pointer has affinity with the thread
performing the cast

SC2001 Programming With the Distributed
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Special Functions

* int upc_threadof(shared void * ptr);
returns the thread number that has affinity to the
shared pointer

* int upc_phaseof(shared void *ptr);
returns the index (position within the block)field
of the shared pointer

 void* upc_addrfield(shared void * ptr);
returns the address of the block which is pointed at
by the shared pointer

SC2001 Programming With the Distributed
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Special Operators

upc_localsizeof (type-name or expression);

returns the size of the local portion of a shared
object.

upc_blocksi zeof (type-name or expression);

returns the blocking factor associated with the
argument.

upc_elemsi zeof (type-name or expression);

returns the size (in bytes) of the left-most type that
Isnot an array.

Programming With the Distributed
Shared-Memory Model 73
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Usage Example of Special

Operators
typedef shared int sharray[10* THREADS];
sharray &;
char i;

upc_localsizeof (sharray) = 10* sizeof(int)
upc_localsizeof(a) - 10 * sizeof (int)
upc_localsizeof(i) > 1

Programming With the Distributed
Shared-Memory Model 74
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UPC Pointers

Shared Pointer Arithmetic Examples:

Assume THREADS =4

#define N 16

shared int X[N];

shared int *dp=&Xx[5], *dp1;
dpl= dp+9;

SC2001 Programming With the Distributed
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Thread O Thread 0 Thread 2 Thread 3
X[0] X[1] X[2] X[3]
X[4] dp X[5] dp+1 X[6] dp+2 X[7]
®+3  X[8] dp+a)  X[9] dp+5 X[10] a6l X[11]
w+7  X[12] do+8|  X[13] dp+9 X[14] X[15]
dp1
SC2001 Programming With the Distributed
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UPC Pointers

Assume THREADS =4
shared[3] x[N], *dp=&Xx[5], *dp1;
dpl=dp+9;

SC2001 Programming With the Distributed
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UPC Pointers

Thread O Thread 1 Thread 2 Thread 3
X[0] X[3] dp+1 X[6] dp+4 X[9]
X[1] X[4] dp+2 X[7] dp +5 X[10]
X[2] dp X[5] dp+3|  X[8] dp+6  X[11]

G| e[ sl |

X[13] dp+8

X[14] ﬂdf+9
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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UPC Pointers

Example Pointer Castings and Mismatched Assignments:

shared int X THREADS];
int *p;
p=(int*) &X[MYTHREAD]; / ppoints toxMYTHREAD] */

» Each of the private pointers will point at the x

element which has affinity with itsthread, i.e.
MY THREAD

SC2001 Programming With the Distributed
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UPC Pointers
Assume THREADS =4

shared int X[N];
shared[3] int *dp=&Xx[5], *dp1,;
dpl= dp+9;

*This statement assignsto dpl avauethat is9
positions beyond dp

*The pointer will follow its own blocking and not the
one of the array

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 80
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UPC Pointers

Thread O Thread 1 Thread 2 Thread 3
X[0] X[1] X[2] X[3]
X[4] dp X[5] do+3 X[6] dp + 6 X[7]
X[8] dp+1 X[9] dp+4 X[10] dp+7  X[11]
X[12] dp+2 X[13] dp+5 X[14] dp+8  X[15]
X[16] [dp+9

dpl
SC2001 Programming With the Distributed

11/12/01 Shared-Memory Model
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UPC Pointers

Given the declarations

shared[3] int *p;

shared[5] int *q;
* Then

p=q; /* is acceptable (implementation may

require explicit cast) */

Pointer p, however, will obey pointer arithmetic
for blocks of 3, not 5!!

A pointer cast setsthe phaseto 0

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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String functionsin UPC

» UPC provides standard library functions to
move data to/from shared memory

» Can be used to move chunks in the shared
space or between shared and private spaces

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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String functionsin UPC

» Equivalent of memcpy :
— upc_memcpy(dst, src, size) : copy from shared to
shared
— upc_memput(dst, src, size) : copy from private to
shared
— upc_memget(dst, src, size) : copy from shared to
private
» Equivalent of memsat:
— upc_memset(dst, char, size) : initialize shared memory
with a character

SC2001 Programming With the Distributed
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Worksharing with upc_forall

* Distributes independent iteration across threads in
the way you wish—typically to boost locality
exploitation

» Simple C-like syntax and semantics
upc_forall(init; test; loop; expression)
statement

» Expression could be an integer expression or a
reference to (address of) a shared object

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model
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Work Sharing: upc _forall()

» Example 1: Exploiting locality
shared int a[100],b[100], c[101];
inti;
upc_forall (i=0; i<100; i++; &a[i])
a[i] = b[i] * c[i+1];

» Example 2: distribution in around-robin fashion
shared int a[100],b[100], c[101];
inti;
upc_forall (i=0; i<100; i++; i)
ali] = b[i] * cfi+1];

Note: Examples 1 and 2 happened to result in the same distribution

SC2001 Programming With the Distributed
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» Example 3: distribution by chunks

shared int a[100],b[100], c[101];
inti;

upc_forall (i=0; i<100; i++; (i* THREADS)/100)

a[i] = bfi] * c[i+1];
i i*THREADS i*THREADS/100
0.24 0..96 0
25..49 100..196 1
50..74 200..296 2
75..99 300..396 3
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 87
UPC Outline

=

akrwbd

o

1.

$C2001
11/12/01

Background and
Philosophy

UPC Execution M odel
UPC Memory Model
UPC: A Quick Intro

Data, Pointers, and
Work Sharing

Dynamic Memory
M anagement

Programming Examples

8. Synchronization

9. Performance
Tuning and Early
Results

10. Concluding
Remarks

Programming With the Distributed
Shared-Memory Model

88




Dynamic
Memory Allocation in UPC

* Dynamic memory allocation of shared
memory isavailablein UPC

* Functions can be collective or not

A collective function has to be called by
every thread and will return the same value
to all of them

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

89

Global Memory Allocation

shared void *upc_global_alloc(size t nblocks, size t
nbytes);

nblocks: number of blocks
nbytes: block size

» Non collective, expected to be called by one thread

» The calling thread allocates a contiguous memory spacein
the shared space

* |If called by more than one thread, multiple regions are
allocated and each thread which makes the call getsa
different pointer

» Space allocated per caling thread is equivalent to :
shared [nbytes] char[nblocks* nbytes]

* (Not yet implemented on Cray)

$C2001
11/12/01

Programming With the Distributed
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Collective Global Memory
Allocation

shared void *upc_all_alloc(size t nblocks, size t nbytes);

nblocks: number of blocks
nbytes: block size

» Thisfunction has the same result as upc_global_alloc. But
thisisacollective function, which is expected to be called
by all threads

 All the threads will get the same pointer

* Equivaentto:
shared [nbytes] char[nblocks* nbytes]

SC2001 Programming With the Distributed
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L ocal Memory Allocation

shared void *upc local_alloc(size t nblocks,
size t nbytes);

nblocks : number of blocks
nbytes: block size

 Returns a shared memory space with affinity to
the calling thread

* Equivaentto:
shared [ ] char[nblocks* nbytes]
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Memory Freeing

void upc_free(shared void *ptr);

* The upc_free function frees the dynamically
allocated shared memory pointed to by ptr

* (Not yet implemented on Cray)

Programming With the Distributed
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Example: Matrix
Multiplication in UPC

» Given two integer matrices A(NxP) and B(PxM), we want
to compute C =A x B.

* Entries C; in C are computed by the formula:

Cij = Z Ail>< BIJ
=1
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 95
01 #include <stdlib.h>
02 #include <time.h>
03 #defineN 4
04 #define P 4
05 #defineM 4
06int a[N][P] = {1,2,3,4,5,6,7,8,9,10,11,12,14,14,15,16}, c[N][M]:
07 int b[P][M] = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1}:
08 void main (void) {
09 inti,j,|;
10 for (i=0;i<N;i++){
11 for j=0; j<M ;j++) {
12 cfilfi] = o;
13 for (1 =07 I<P; I++) c[i][j] += a[i][I]*b[I][j];
14 }
15 }
16}
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* Exploitslocality in matrix multiplication

Domain Decomposition for UPC

A (N x P) isdecomposed row-wise + B(Px M) isdecomposed column wise

into blocks of size (N x P) / into M/ THREADS blocks as shown
THREADS as shown below: bel ow: Thread THREADSA
Thread 0
«~—P— M —Db
0.. (N*P/ THREADS) -1 Thread 0
(N*P/ THREADS)..(2*N*P/ THREADS)-1 Thread 1
o
N * P ° ° °
[ ]
((THREADS-1)xN*P) / THREADS .. Thread THREADS-1

(THREADS*N*P/ THREADS)-1

*Note: N and M are assumed to be multiples Columns 0: /4

of THREADS
(M/THREADS)-1 Columns ((THREAD-1) x

M)ITHREADS:(M-1)

SC2001 Programming With the Distribute:
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UPC Matrix Multiplication
Code

/I mat_mult_1.c
#include <upc_relaxed.h>

#defineN 4
#defineP 4
#defineM 4

shared [N*P /THREADS] int a[N][P] = {1,2,34,5,6,7,8,9,10,11,12,14,14,15,16}, c[N][M];
/I aand c are blocked shared matrices, initialization is not currently implemented
shared[M/THREADS] int b[P][M] ={0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1};

void main (void) {
inti,j,l; // privatevariables

upc_forall(i=0; i<N ; i++; &c[i][0]) {
for (j=0; j<M ;j++) {
cillil =0;
for (1= 0 1<P; I++) c[i][j] += ali][l]*b[I[j];

}
}
}
SC2001 Programming With the Distributed
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UPC Matrix Multiplication
Code with block copy

#include <upc_relaxed.h>

/I mat_mult_3.c

shared [N*P /THREADS] int a[N][P], c[N][M];
/I aand c are blocked shared matrices, initialization is not currently implemented
shared[M/THREADS] int b[P][M];

int b_local[P][M];

void main (void) {
inti,j,I; // privatevariables

upc_memget(b_local, b, P*M *sizeof(int));

upc_forall(i =0 i<N ; i++; &ci][0]) {
for (j=0; j<M ;j++) {
c[illil1=0;
for (1= 0 1<P; I++) c[i][j] += ali][l]*b_local[I][j1;

}

SC2001 Programming With the Distributed
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Matrix Multiplication with
dynamic memory

#include <upc_relaxed.h>

/I mat_mult_2.c

shared [N*P /THREADS] int *a, *¢;
shared[M/THREADS] int *b;

void main (void) {
inti,j,I; // privatevariables

a=upc_all_alloc(N,P*upc_elemsizeof (*a));
c=upc_all_alloc(N,P* upc_elemsizeof(*c));
b=upc_all_alloc(M, upc_elemsizeof(*b));

upc_forall(i=0; i<N ; i++; &c[i][0]) {
for (j=0; j<M ;j++) {
c[i*M+j] =0;
for (I=0; I<P ; I++) c[i*M+] += a[i* M +]*b[I*M +];

}

SC2001 Programming With the Distributed
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Example: Sobel Edge Detection

: N\ 2
Original Image Edge-detected Image
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 101
Sobel Edge Detection
e Template Convolution
e Sobel Edge Detection Masks
e Applying the masks to an image
SC2001 Programming With the Distributed
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Template Convolution

Lol -1] o
-The template and_ the Al 4l 1] Template
image will do a pixel P ol -1l o
by pixel multiplication 0 ~
and add up to a result
pixel value. 10[,720] 25[ 20f 15[ 10] 10] 20
801 100| 90| 95| 105| 100| 105| 110

*The generated pixel _ .
value will be applied to |40 30| 35”15 20| 25[ 80| 40

the central pixel in the | 20| 20| 30| 60| 80| 100| 200| 40

resulting image. 10| 40| 45| 50| 60| 70| 205| 40

_ 40| 45| 30| 80| 60| 80| 230| 50
*The template will go 60| 100| 110] 110] 80| 80| 255 50
through the entire 20| 30| 25| 10| 10| 10| 200| 50
image.

Image
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Applying the Masks to an Image

West Mask: Vertical Edges North Mask: Horizontal Edges

-1l 0] 1 -1 -2| -1 10 20| 25 20
21 0| 2 ol ol o 80| 100 90 95
1 ol 1 1l 20 1 40 30| 35 15
— 20 20| 30 60
A4 A

-1*10 0 1*25 -1*10| -2*20| -1*25
-2*80 0 2*90 0 0 0 10 20 25 20
-1*40 0 1*35 1*40| 2*30| 1*35 30 67 90 95
l 40 30| 35| 15
m 20 20 i 30| 60

V60? +30° = 67
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Sobel Edge Detection —
The C program

#defi ne BYTE unsi gned char
BYTE orig[NI[N], edge[ N [N] ;
int Sobel ()
{ int i,j,d1,dz;
doubl e magni t ude;
for (i=1; i<N-1; i++)
{ for (j=1; j<N-1; j++)
{ dl = (int) orig[i-1][j+1] - orig[i-1][j-1];
dl += ((int) orig[i][j+1] - orig[i][j-1]) << 1;
dl += (int) orig[i+1][j+1] - orig[i+1][j-1];
d2 = (int) orig[i-1][j-1] - orig[i+1][j-1];
d2 += ((int) orig[i-1][j] - orig[i+1][j]) << L
d2 += (int) orig[i-1][j+1] - orig[i+1][j+1];
magni tude = sqrt(dl*d1+d2*d2);
edge[i][j] = magnitude > 255 ? 255 : (BYTE) nmgnitude;

}
}
return O;
}
SC2001 Programming With the Distributed
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Sobel Edge Detection in UPC
« Distribute data among threads
» Using upc _forall to do the work in parallel
SC2001 Programming With the Distributed
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Distribute data among threads

—}-

} Thread 1

- Thread2,

80| 80| 255| 50
20| 30| 25| 10| 10| 10| 200| 50 } Thread 3

shared [16] BYTE orig[8][8], edge[ 8] [ 8]

O in General
shared [ N*N THREADS] BYTE ori g[NJ[ N, edge[ N[ N|

SC2001 Programming With the Distributed
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Sobel Edge Detection—
The UPC program
#def i ne BYTE unsi gned char
shared [ N*N THREADS] BYTE orig[ N[N, edge[N[N;
int Sobel ()
{ int i,j,d1,dz;
doubl e magni t ude;
upc_forall (i=1; i<N1; i++ &edge[i][0])
{ for (j=1; j<N-1; j++)
{ dl = (int) orig[i-11[j+1] - orig[i-1][j-1];
dl += ((int) orig[il[j+1] - orig[i]l[j-1]) << 1;
dl += (int) orig[i+1][j+1] - orig[i+1][j-1];
d2 = (int) orig[i-1][j-1] - orig[i+1][j-1];
d2 += ((int) orig[i-1J[j] - origli+1][j]) << 1;
d2 += (int) orig[i-11[j+1] - orig[i+1][]j+1];
magni tude = sqrt(dl*d1+d2*d2);
edge[i][j] = magnitude > 255 ? 255 : (BYTE) magnitude;
}
}
return O;
}
SC2001 Programming With the Distributed
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Notes on the Sobel Example

* Only afew minor changesin sequential C
code to make it work in UPC

* N isassumed to be amultiple of THREADS

e Only thefirst row and the last row of pixels
generated in each thread need remote
memory reading

SC2001 Programming With the Distributed
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Synchronization

» No implicit synchronization among the threads
» UPC provides the following synchronization

mechanisms:
— Barriers
— Locks
— Memory Consistency Control

111

Synchronization - Barriers

» No implicit synchronization among the threads

» UPC providesthe following barrier
synchronization constructs.

— Barriers (Blocking)

* upc_barrier expry;

— Split-Phase Barriers (Non-blocking)

* upc_notify exproy;

* upc_wait expry;

Note: upc_notify is not blocking upc_wait is

SC2001 Programming With the Distributed
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Synchronization - Locks

* In UPC, shared data can be protected against
multiple writers :
— void upc_lock(shared upc_lock t *1)
— int upc_lock_attempt(shared upc _lock t *I) //returns 1
on success and 0 on failure
— void upc_unlock(shared upc_lock_t *1)
» Locks can be allocated dynamically
» Dynamic locks are properly initialized and static
locks need initialization

SC2001 Programming With the Distributed
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Memory Consistency Models

» Hasto do with the ordering of shared operations

» Under the relaxed consistency model, the shared
operations can be reordered by the compiler /
runtime system

» Thestrict consistency model enforces sequential
ordering of shared operations. (no shared
operation can begin before the previoudy
specified oneis done)

SC2001 Programming With the Distributed
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Memory Consistency Models

» User specifies the memory model through:
— declarations

— pragmas for a particular statement or sequence
of statements

— use of barriers, and global operations
» Consistency can be strict or relaxed

* Programmers responsible for using correct
consistency model

SC2001 Programming With the Distributed
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Memory Consistency

» Default behavior can be controlled by the
programmer:
— Use strict memory consistency
#include<upc_strict.h>

— Use relaxed memory consistency
#include<upc_relaxed.h>
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Memory Consistency

» Default behavior can be altered for a
variable definition using:
— Type qudifiers. strict & relaxed

» Default behavior can be altered for a
statement or a block of statements using

— #pragma upc strict
— #pragma upc relaxed
e BB e et 117
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How to Exploit the
Opportunitiesfor Performance
Enhancement?

Compiler optimizations
Run-time system
« Hand tuning

SC2001 Programming With the Distributed
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List of Possible Optimizations for
UPC Code

1. Space privatization: use private pointersinstead
of shared pointers when dealing with local
shared data (through casting and assignments)

2. Block moves: use block copy instead of copying
elements one by one with aloop, through string
operations or structures

3. Latency hiding: For example, overlap remote
accesses with local processing using split-phase
barriers

SC2001 Programming With the Distributed
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Typical Performance of Shared

vS. Private Accesses

MB/s read single |writesingle
elements elements

CC 640.0 400.0
UPC Private 686.0 565.0
UPC local 7.0 440
shared

UPC remote 0.2 0.2
shared

11/12/01 Shared-Memory Model
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Using L ocal Pointersinstead of
Shared Pointers
|nt *pa= (int*) &A[i][0];
int *pc = (int*) &CJ[i][0];
upc_forall (i=0:i<N;i++&A[i][0]) {
for(j=0;j<P;j++)
palj]+=pclj];

» Pointer arithmetic is faster using local pointers than shared

pointers.
» The pointer dereference can be one order of magnitude
faster.
SC2001 Programming With the Distributed
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Perfor mance of UPC

* NPB in UPC underway

 Current benchmarking results on Compaq for:
— Nqueens Problem
— Matrix Multiplications
— Sobel Edge detection
— Synthetic Benchmarks

» Check the web site for areport with extensive
measurements on Compag and T3E

SC2001 Programming With the Distributed
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Perfor mance of Nqueens on the Compaq
AlphaServer

Speedup for the
Execution time for the Nqueens problem in UPC (N=16)
Nqueens problem in UPC (N=16)
200

20
5D ‘ 15 A
2 \ 0 / ——UPC
g, \ : / —a—[deal
‘\‘\0 0 'J

0 5 aTiing g 2 0 4 (Bcalability 20

seconds

rocessors
b processors
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Perfor mance of Edge detection on
the Compaqg AlphaServer SC

Execution time(N=512) 20 Speedup(N=512)
4.0 18l
3.5 16| ——UPC
8.0 o 14| s ypc o1
g2 \ 52| upcotroz
E 2.0 4 $10
1.5 &8 —*
1.0 5
0.5 4 /
0.0 : N / _
0 5 proc. 10 15 20 0 e
0 5 Proc. 10 15
a. Execution time b. Scalability

O1: using private pointers instead of shared pointers
02: using structure copy instead of element by element

20
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Perfor mance of Optimized UPC versus
MPI for Edge detection
Execution time(N=512) 20 Speedup(N=512)
181 UPC 01+02
0.07
0.06 uPCcO1+02 | | ii I
005 MPI |
o \ —x— §_12 /
£ 0.03 | l\ g0
002 @8 /
6
0.1 | \‘\’\x .
0.00 . . E /
0 5 10 15 20 21X
Proc. 0 . Scalability ‘
0 5 Proc. 10 15 20
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Effect of Optimizations on Matrix
Multiplication on the AlphaServer SC

400
350
300

~ 250

@ 200

£ 150
100

50
0

Execution time

]

—e—UPC
—=—UPCO1
UPC 01 +02|]

N

d

T~

0

5

Proc.

10

15

20

a. Execution time

16 -
14
12 A

10

oON B~ O
L

Speedup
—e—UPC
—m— UPC O1
UPC 01+02
ﬁ.:.ép//,::
0 5 ProclO 15
b. Scalability

O1: using private pointer instead of shared pointer
02: using structure copy instead of element by element

20
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Perfor mance of Optimized UPC versusC +
MPI for Matrix Multiplication
Speedup
Execution time
20
7 UPC
6 15 01+02
2 o
@ 44 —%— MPI 1
[
'E 3 51 //’
2
1 \\K 0 * T T T
0 . : T 0 5 10 15 20
0 5 10 15 20
Proc.
Proc.
a. Execution time b. Scalability
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Conclusions

UPC is easy to program in for C writers,
significantly easier than alternative paradigms at
times

UPC exhibits very little overhead when compared
with MPI for problems that are embarrassingly
parallel. No tuning is necessary.

For other problems compiler optimizations are
happening but not fully there

With hand-tuning, UPC performance compared
favorably with MPI on the Compag AlphaServer

Hand tuned code, with block moves, is still
substantially simpler than message passing code
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Shared-Memory Model

130

65



http://upc.gwu.edu

h Sembrn N "ol |5 Eoeiie R ]

JEELP LML LI

E;:!_ﬁ_m-—l.—- |v~—|u—|u--—|m-|n—-i"mfrf
A Co-Array Fortran Tutorial
Robert W. Numrich
Cray Inc.
== F _ o

66



Outline

1. Philosophy of Co-Array Fortran
2. Co-arrays and co-dimensions
3. Execution model
4. Relativeimageindices
5. Synchronization
6. Dynamic memory management
7. Examplefrom UK Met Office
8. Examplesfrom Linear Algebra
9. Using “Object-Oriented” Technigues with Co-Array
Fortran
10. 1/0
11. Summary
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 133
1. The Co-Array Fortran
Philosophy
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The Co-Array Fortran Philosophy

* What isthe smallest change required to make
Fortran 90 an effective parallel language?

» How can this change be expressed so that it is
intuitive and natural for Fortran programmers to
understand?

» How can it be expressed so that existing compiler
technology can implement it efficiently?

SC2001 Programming With the Distributed
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The Co-Array Fortran Standard

» Co-Array Fortran is defined by:

— R.W. Numrich and J.K. Reid, “Co-Array
Fortran for Parallel Programming”, ACM
Fortran Forum, 17(2):1-31, 1998

* Additional information on the web:
— WWW.Co-array.org
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Co-Array Fortran on the T3E

» CAF has been a supported feature of
Fortran 90 sincerelease 3.1

* f90 -Z src.f90
* mpprun -n/ a.out

SC2001 Programming With the Distributed
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Non-Aligned Variablesin SPMD
Programs

o Addresses of arrays are on the local heap.

» Sizes and shapes are different on different
program i mages.

» One processor knows nothing about
another’s memory layout.

» How can we exchange data between such
non-aligned variables?
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Some Solutions
« MPI-1

— Elaborate system of buffers

— Two-sided send/receive protocol

— Programmer moves data between local buffers only.
e« SHMEM

— One-sided exchange between variablesin COMMON

— Programmer manages non-aligned addresses and computes offsets
into arrays to compensate for different sizes and shapes

e MPI-2
— Mimic SHMEM by exposing some of the buffer system
— One-sided data exchange within predefined windows
— Programmer manages addresses and offsets within the windows

SC2001 Programming With the Distributed
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Co-Array Fortran Solution

* Incorporate the SPMD Model into Fortran 95
itsel f
— Mark variables with co-dimensions
— Co-dimensions behave like normal dimensions
— Co-dimensions match problem decomposition not

necessarily hardware decomposition

* The underlying run-time system maps your
problem decomposition onto specific hardware.

* One-sided data exchange between co-arrays
— Compiler manages remote addresses, shapes and sizes

SC2001 Programming With the Distributed
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The CAF Programming Model

» Multiple images of the same program (SPMD)
— Replicated text and data
— The program is written in a sequential language.
— An*“object” has the same name in each image.

— Extensions allow the programmer to point from an
object in one image to the same object in another
image.

— The underlying run-time support system maintains a
map among objects in different images.
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2. Co-Arrays and Co-Dimensions
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What is Co-Array Fortran?

» Co-Array Fortran (CAF) isasimple parallel
extension to Fortran 90/95.

* It uses normal rounded brackets () to point
to datain local memory.

* It usessquare brackets[ ] to point to datain
remote memory.

» Syntactic and semantic rules apply
separately but equally to () and [ ].

SC2001 Programming With the Distributed
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What Do Co-dimensions Mean?

The declaration
real ;2 x(n)[p,q,*]
means
1. Anarray of length nisreplicated across images.

2. Theunderlying system must build a map among these
arrays.

3. Thelogical coordinate system for imagesis athree
dimensional grid of size

4, (p,a,r) where r=num_images()/(pq)

SC2001 Programming With the Distributed
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Examples of Co-Array Declarations
real :: a(n)[*]
real ::b(n)[p."]
real ::c(nm)[p.q,"]
complex,dimension[*] :: z
integer,dimension(n)[*] :: index
real ,allocatable,dimension(;)[:] :: w
type(field), allocatable,dimension(:,:] :: maxwell

SC2001 Programming With the Distributed
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Communicating Between Co-Array
“Objects’

y(:) =xC)IP]

mylndex(:) = index(:)
yourlndex(:) = index(:)[you]
yourField = maxwell[you]
X()[a] = x() +x()p]
x(index(:)) = y[index(:)]

Absent co-dimension defaultsto the local object.
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11/12/01 Shared-Memory Model

146

73



CAF Memory Model

p q
x(Dldl
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Examplel: A PIC Code Fragment

type(Pstruct) particle(myMax),buffer(myMax)[*]
myCell = this_image(buffer)
yours=0
do mine =1,myParticles
If(particle(mine)%x > rightEdge) then
yours=yours+ 1
buffer(yours)[myCell+1] = particle( mine)
endif
enddo

SC2001 Programming With the Distributed
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Exercise: PIC Fragment

» Convince yourself that no synchronization
isrequired for this one-dimensional
problem.

» What kind of synchronization isrequired
for the three-dimensional case?

» What are the tradeoffs between
synchronization and memory usage?
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11/12/01 Shared-Memory Model

149

3. Execution Model
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The Execution Model (1)

The number of imagesisfixed.
This number can be retrieved at run-time.
num_images() >=1
Each image has its own index.
Thisindex can beretrieved at run-time.
1 <=this_image() <= num_images()

Programming With the Distributed
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$C2001
11/12/01

The Execution Model (11)

Each image executes independently of the
others.

Communication between images takes place
only through the use of explicit CAF

syntax.

The programmer inserts explicit
synchronization as needed.

Programming With the Distributed
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Who Builds the Map?

» The programmer specifies alogical map
using co-array syntax.

* The underlying run-time system builds the
logical-to-virtual map and avirtual-to-
physical map.

» The programmer should be concerned with
the logical map only.

SC2001 Programming With the Distributed
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One-to-One Executi on Modedl
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M any-to-One Execulti on Model

! X(l)[q] I
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One-to-M an;g Executl oQ Mod€d
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Many-to-Many Execution Model

$C2001 Pr ing With the Distril d

157

11/12/01 Shared-Memory Model
4. Relative Image Indices
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Relative Image Indices

Runtime system builds a map among
images.
CAF syntax isalogical expression of this
map.
Current image index:
1 <= this_image() <= num_images()
Current image index relative to a co-array:
lowCoBnd(x) <=this_image(x) <= upCoBnd(x)

SC2001 Programming With the Distributed
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Relative Image Indices (1)

1 2 3 4
1 1 5 9 13
, |2 6 10 14
3 3 7 11 15
4 |4 8 12 16

X[4,*] this image() =15  this image(x) = (/3,4/)
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Relative Image Indices (11)
0 1 2 3

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

X[0:3,0:*] this_image() = 15

this_image(x) = (/2,3/)

Programming With the Distributed
Shared-Memory Model
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Relative Image Indices (111)

0 1 2 3
s |1 5 9 13
4 |2 6 10 14
3 |3 7 11 15
5 |4 8 12 16

X[-5:-2,0:*] this_image() = 15

$C2001
11/12/01

this_image(x) = (/-3, 3/)

Programming With the Distributed
Shared-Memory Model
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Relative Image Indices (1V)

0 1 2 3 4 5 6 7

O11 |3 |5 |7 |9 |11 |13 |15

112 |4 |6 |8 |10 |12 |14 |16

X[0:1,0:*] this image() = 15 this_image(x) =(/0,7/)

SC2001 Programming With the Distributed
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5. Synchronization
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Synchronization Intrinsic Procedures

sync_all()

Full barrier; wait for all images before continuing.
sync_all(wait(:))

Partial barrier; wait only for those imagesin the wait(:) list.
sync_team(list(:))

Team barrier; only imagesin list(:) are involved.
sync_team(list(:),wait(:))

Team barrier; wait only for those images in the wait(:) list.
sync_team(myPartner)

Synchronize with one other image.

SC2001 Programming With the Distributed
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Events
sync_team(list(:),list(me:me)) post event
sync_team(list(;),list(you:you)) wait event
SC2001 Programming With the Distributed
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Example: Globa Reduction

subroutine d b _dsungx n
red (k nd=8),d nension(n[Q*] :: x
red (ki nd=8),d nenson(n) :: wk
irteger nkt,i, nypatner,d mne m
d m=log2 i mages()
if(d meg Q reun
m=2**d m
bt =1
me =ths i mage(X)
doi=l,dm
nypart ner =xor( ng, t)
bt=shftl(kt, 1)
cdl sync_dl()
wk(:) =x()[ nypart ner]
cdl sync_dl()
X)) +wk(:)
enddo
end subrouinedb dsum

Programming With the Distributed
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» Convince yourself that two sync points are
required.

Exercise: Globa Reduction

» How would you modify the routine to

$C2001
11/12/01

handle non-power-of-two number of
images?

» Can you rewrite the example using only one
barrier?

Programming With the Distributed
Shared-Memory Model




Other CAF Intrinsic Procedures

sync_memory()

Make co-arrays visible to al images
sync_file(unit)

Make local 1/0O operations visible to the global file system.
start_critical()

end_critical()
Allow only one image at a time into a protected region.

SC2001 Programming With the Distributed
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Other CAF Intrinsic Procedures

log2_images()
Log base 2 of the greatest power of two less
than or equal to the value of num_images()
rem_images()
The difference between num_images() and
the nearest power-of-two.
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7. Dynamic Memory
M anagement

SC2001 Programming With the Distributed
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Dynamic Memory Management

» Co-Arrays can be (should be) declared as
alocatable

real,allocatable,dimension(:,:)[:,:] :: X
» Co-dimensions are set at run-time
allocate(x(n,n)[p,*])  implied sync
 Pointers are not allowed to be co-arrays
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User Defined Derived Types

» F90 Derived types are similar to structuresin C

type vector
real, pointer,dimension(:) :: elements
integer :: size

end type vector

= Pointer components are allowed
= Allocatable components will be allowed in F2000
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Irregular and Changing
Data Structures

Z[p]Yoptr

»
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8. An Example from the UK Met
Office
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Problem Decomposition and
Co-Dimensions

N

[p.g+1]
p1al | [pdl |[p+Lldl E

[p,q-1]

S
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Cyclic Boundary Conditionsin
East-West Directions

myP = this_image(z,1) | East-West

West = myP- 1
if(West < 1) West = nProcX ICyclic

East=myP+ 1
if(East > nProcX) East =1 ICyclic
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Incremental Update to Fortran 95

» Field arrays are allocated on the local heap.

» Define one supplemental F95 structure
type cafField
real ,pointer,dimension(:,:,:) :: Field
end type cafField
» Declare aco-array of thistype
type(caf Field),allocatable,dimension[:,] :: z
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Allocate Co-Array Structure

allocate (z[ nP,*])
 Implied synchronization
 Structureis aligned across memory images.
— Every image knows how to find the pointer
component in any other image.
 Set the co-dimensions to match your
problem decomposition

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

179

Local Aliasto Remote Data
Z% Fidd => Fidd

 Pointer assignment creates an alias to the local
Field.

* Thelocal Field isnot aligned across memory
Images.

» Buttheadliasisaligned because it is a component
of an aligned co-array.
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Co-Array Aliasto a Remote Field

Z[p,q]%field

SC2001 Programming With the Distributed
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East-West Communication
* Movelast row from west to my first halo
* Fied(0,1:n,;) = z[ West, myQ ]%Field(m,1:n,:)
* Movefirst row from east to my last halo
e Fidd(m+1,1:n,:) =z [ East, myQ ]% Field(1,1:n,:)
SC2001 Programming With the Distributed
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Total Time (s)
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Other Kinds of Communication

» Semi-Lagrangian on-demand lists
Field(i,list1(:),k) =z [myPal]% Field(i,list2(;),k)

» Gather datafrom alist of neighbors
Field(i, j,k) = z [list(:)]% Field(i,j k)

e Combine arithmetic with communication
Field(i, j k) = scale*z [myPal]% Field(i j k)
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6. Examplesfrom Linear Algebra
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Blocked Matrices (1)

type matrix
real,pointer,dimension(:,:) :: elements
integer :: rowSize, colSize

end type matrix

type blockMatrix
type(matrix),pointer,dimension(:,:) :: block
end type blockMatrix
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Blocked Matrices (2)

type(blockMatrix),allocatable :: &[:,:]
allocate(a[p,*])

allocate(a%bl ock(nRowBIks,nCol Blks))
a%block(j,k)%rowSize = nRows
a%block(j,k)%col Size = nCols

SC2001 Programming With the Distributed
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Irregular and Changing

Data Structures

= Co-arrays of derived type vectors can be used
to create sparse matrix structures.

type(vector),alocatable,dimension(;)[:] :: rowMatrix
alocate(rowMatrix(n)[*])
doi=1,n
m = rowSize(i)
rowMatrix(i)%size=m
allocate(rowMatrix(i)%el ements(m))
enddo

SC2001 Programming With the Distributed
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Matrix Multiplication

myQ myQ

we | [ HEEN

SC2001 Programming With the Distributed
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Matrix Multiplication
real,dimension(n,n)[p,*] :: ab,c
do k=1,n
do g=1,num_images()/p
c(i,j) = c(i.j) + a(i,k)[myP, ql*b(k,j)[qmyQ]
enddo
enddo
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Distributed Transpose (1)

myP

real matrix(n,m)[p,*]
matrix[myP,myQ](i,j) = matrix(j,i)[myQ,myP]

$C2001 Pr ing With the Distril d
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Distributed Transpose (2)

block(j,k)  block(k,))
my0 myP

myP

type(blockMatrix) :: ap,*]
a%oblock(j,k)%oelement(i,j) = almyQ,myP] %block(k,j)%elemnt(j,i)
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Distributed Transpose (3)

you

type(columnBlockMatrix) :: a[*],b[*]
al me] %block (you)%element(i,j) = b[you]%obl ock(me)%oel ement(j,i)
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9. Using “ Object-Oriented”
Techniques with Co-Array Fortran
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Using “ Object-Oriented” Techniques
with Co-Array Fortran

 Fortran 95 is not an object-oriented language.

* It contains some features that can be used to
emulate object-oriented programming methods.

— Named derived types are similar to classes without
methods.

— Modules can be used to associate methods |oosely with
objects.

— Generic interfaces can be used to overload procedures
based on the named types of the actual arguments.

SC2001 Programming With the Distributed
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CAF Pardllel “Class Libraries’
program main
use blockMatrices
type(blockMatrix) :: x
type(blockMatrix) :: y[*]
call new(x)
call new(y)
call luDecomp(x)
call luDecomp(y)
end program main
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9. CAFI/O
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CAF1/0 (1)

* Thereisonefile system visibleto all
images.

* Animage can open afile alone or as part of
ateam.

» The programmer controls access to the file
using direct access |/O and CAF intrinsic
functions.
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CAF1/0 (2)

* A new keyword , team=, has been added to the
open statement:
open(unit=,file=,team=list,access=direct)
Implied synchronization among team members.
» A CAFintrinsic function is provided to control
file consistency across images:
cal sync_file(unit)
Flush all local 1/0 operations to make them visible to
the global file system.
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CAF1/0 (3)

» Read from unit 10 and place datain x(:) on
image p.
read(10,*) x(:)[p]
» Copy datafrom x(:) on image p to alocal
buffer and then write it to unit 10.
write(10,%) x(:)[p]
» Writeto a specified record in afile:
write(unit,rec=myPart) x(:)[q]

SC2001 Programming With the Distributed
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10. Summary

SC2001 Programming With the Distributed
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Why Language Extensions?

Languages are truly portable.

There is no need to define a new language.
Syntax gives the programmer control and
flexibility

Compiler concentrates on local code
optimization.
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Why Language Extensions?

o Compiler evolves as the hardware evolves.

— Lowest latency allowed by the hardware.
— Highest bandwidth allowed by the hardware.

— Dataends up in registers or cachenot in
memory

— Arbitrary communication patterns
— Communication along multiple channels

SC2001 Programming With the Distributed
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Summary

» Co-dimensions match your problem
decomposition

— Run-time system matches them to hardware
decomposition

— Local computation of neighbor relationships
— Flexible communication patterns
» Code simplicity
— Non-intrusive code conversion
— Modernize code to Fortran 95 standard

» Performanceis comparableto or better than
library based models.
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Titanium: A Java Dialect for

High Performance Computing
Kathy Yelick

U.C. Berkeley
Computer Science Division
http://www.cs.berkel ey.edu/projects/titanium

Titanium Group

¢ Susan Graham * Andrew Bege
» Katherine Yelick » Dan Bonachea
» Paul Hilfinger » Tyson Condie
 Phillip Colella(LBNL) » David Gay
» Alex Aiken * BenLiblit
* Chang Sun Lin
» Greg Balls (SDSC) » Geoff Pike
» Peter McQuorquodale e Jmmy Su
(LBNL) + SiuMan Yau
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Target Problems

* Many modeling problemsin astrophysics, biology,
material science, and other areasrequire
— Enormous range of spatial and temporal scales
» Tosolveinteresting problems, one needs:
— Adaptive methods
— Large scale parallel machines

e Titanium isdesigned for methodswith
— Stuctured grids
— Locally-structured grids (AMR)
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Common Requirements

e Algorithmsfor numerical PDE

computationsare
— communication intensive
— memory intensive r‘
* AMR makesthese harder

— more small messages

— more complex data structures

— most of the programming effort is

debugging the boundary cases
— locality and load balance trade-off is hard
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Why Javafor Scientific Computing?

e Computational scientists useincreasingly
complex models

— Popularized C++ features: classes, overloading, pointer-
based data structures

e But C++isvery complicated
— easy to lose performance and readability
e Javaisabetter C++
— Safe: strongly typed, garbage collected
— Much simpler to implement (research vehicle)
— May use the language without the VM model

SC2001 Programming With the Distributed
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Summary of Features Added to Java

e Multidimensional arrayswith iterators
e Immutable (“valu€e’) classes

e Templates

e Operator overloading

e Scalable SPMD parallelism

» Global address space

» Checked Synchronization

e Zone-based memory management

o Scientific Libraries
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Outline

Titanium Execution Model

— SPMD

— Globa Synchronization

— Single
Titanium Memory Model
Support for Serial Programming
Performance and Applications
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SPMD Execution Moded

e Titanium hasthe same execution moddl as UPC and
CAF.

» Basic Java programsmay berun as Titanium, but all
processorsdo all thework.

e E.g., paralld helloworld

class Hellowrld {
public static void main (String [] argv) {
Systemout.printin(“Hello fromproc “ +
Ti.thisProc());
}
}

* Any non-trivial program will have communication
and synchronization
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SPMD Model

All processors start together and execute same code, but not in
lock-step
Basic control doneusing
— Ti.numProcs() total number of processors
— Ti.thisProc() number of executing processor
Bulk-synchronous style
read all particles and conpute forces on mnine
Ti.barrier();
wite to ny particles using new forces
Ti.barrier();

Thisisneither message passing nor data-parallel

SC2001 Programming With the Distributed

11/12/01 Shared-Memory Model 213

Barriers and Single

» Common sour ce of bugsisbarriersor other global
oper ationsinside branches or loops

barrier, broadcast, reduction, exchange

* A “single’” method isonecalled by all procs
public single static void allStep(...)

* A*dingle’ variable has samevalueon all procs
int single tinestep = 0;

» Singleannotation on methods (also called “ sglobal”) is
optional, but useful to under standing compiler
messages.
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Explicit Communication: Broadcast

Broadcast isa one-to-all communication
br oadcast <val ue> from <processor >

For example:
int count = O;
int all Count = O;
if (Ti.thisProc() == 0) count = conputeCount();
al | Count = broadcast count from O;
The processor number in the broadcast must be
single; all constantsaresingle.

— All processors must agree on the broadcast sour ce.
The allCount variable could be declared single.

— All processorswill have the same value after the broadcast.
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Example of Data Input

e Same example, but reading from keyboard

» Shows use of Java exceptions
int myCount = O;
int single allCount = O;
if (Ti.thisProc() == 0)
try {
Dat al nput Stream kb = new
Dat al nput Strean( System in);

myCount =
I nt eger. val uef (kb. readLine()).intVal ue();

} catch (Exception e) {

Systemerr.printin("Illegal I|nput");
}
al | Count = broadcast nyCount from O;
SC2001 Programming With the Distributed
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More on Single

» Global synchronization needsto be controlled
if (this processor owns some data) {
compute on it
barrier

}
* Hencetheuseof “single” variablesin Titanium

 If aconditional or loop block containsabarrier,

all processors must execute it

— conditions in such loops, if statements, etc. must contain

only single variables
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Single Variable Example

» Barriersand singlein N-body Simulation
class ParticleSim|{
public static void main (String [] argv) {
int single allTinestep = 0;
int single allEndTine = 100;
for (; allTimestep < all EndTi ne; al |l Ti nest ep++) {
read all particles and conpute forces on mne
Ti.barrier();
wite to ny particles using new forces
Ti.barrier();
}
}
}

» Single methodsinferred by the compiler
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Outline

Titanium Execution M odel

Titanium Memory Model

— Global and Local References

— Exchange: Building Distributed Data Structures
— Region-Based Memory Management

Support for Serial Programming
Performance and Applications
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Use of Global / Loca

As seen, references (pointers) may beremote
— easy to port shared-memory programs

Global pointers are more expensive than local
— True even when datais on the same processor
— Uselocal declarationsin critical sections

Costs of global:
— space (processor number + memory address)
— dereference time (check to seeif local)

May declar e references aslocal

— Compiler will automatically infer them when possible
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Global Address Space

 Processes allocate locally

Other
e Referencescan be passed to Process0  processes
other processes lv v
i . qv HEAP gv HEAP
Class C{ int val;... }

C gv; /1 gl obal pointer

Clocal lv; // local pointer Iv Iv
if (thisProc() == 0) { W@ @’O

lv = new C();

} Iv Iv
gv = broadcast Iv fromO;
gv.val = ...; v v

= gv.val;

SC2001 Programming With the Distributed
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Shared/Private vs Global/Loca

» Titanium’sglobal address space isbased on pointers
rather than shared variables

* Thereisnodistinction between a private and shared
heap for storing objects

» All objects may bereferenced by global pointersor by
local ones

* Thereisnodirect support for distributed arrays

— Irregular problems do not map easily to distributed arrays, since
each processor will own a set of objects (sub-grids)

— For regular problems, Titanium uses pointer dereference instead of
index calculation

— Important to have local “views’ of data structures
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Aside on Titanium Arrays

e Titanium addsits own multidimensional array
classfor performance

e Distributed data structuresare built usinga 1D
Titanium array

« Slightly different syntax, since Java arrays till
exist in Titanium, e.g.:

int [1d] arr;
arr = new int [100];
arr[1] = 4*arr[1];
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Explicit Communication: Exchange

e Tocreateshared data structures
— each processor builds its own piece
— pieces are exchanged (for object, just exchange pointers)
» Exchangeprimitivein Titanium
int [1d] single allData;
all Data = newint [O:Ti.nunProcs()-1];
al | Dat a. exchange(Ti .t hisProc()*2);

* E.g., 0n 4 procs, each will have copy of allData:

Lof2]a]c6]
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Building Distributed Structures

e Distributed structuresare built with exchange:
cl ass Boxed {
public Boxed (int j) { val =j;}
public int val;

} Pl Fl F3
allDets ullDats alllata
(T =t N R
wal: O 3 — “ val: | 'T'_ val 2_
Obj ect [1d] single allData,;
all Data = new Qbject [O:Ti.nunmProcs()-1];
al | Dat a. exchange(new Boxed(Ti.thisProc());
SC2001 Programming With the Distributed
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Distributed Data Structures
» Building distributed arrays:

Particle [1d] single [1d] allParticle =

new Particle [O:Ti.nunProcs-1][ 1d];

Particle [1d] nyParticle =

new Particle [0:nmyParticl eCount-1];

al Il Particl e. exchange(nyParticle);

e Now each processor hasarray of pointers, oneto
each processor’s chunk of particles

PO P1 P2
SC2001 Programming With the Distributed
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Region-Based Memory Management

* An advantage of Java over C/C++ is:
— Automatic memory management

» But garbagecollectionis:
— Has areputation of slowing serial code

— Ishard to implement and scale in a parallel
environment

e Titanium takesthe following approach:

— Memory management is safe — cannot deallocate live
data

— Garbarge collection is as default (most platforms)
— Higher performance is possible using regions
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Region-Based Memory Management

* Need to organize data structures
» Allocate set of objects (safely)

PrivateRegion r = new PrivateRegion();

for (int j =0; j <10; j++) {
int[] x =new ( r ) int[j + 1];
work(j, X);

}

try { r.delete(); }
catch (Regi onl nUse oops) {
Systemout.println(“failed to delete”);

}
}
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Outline

Titanium Execution Model
Titanium Memory Model
Support for Serial Programming
— Immutables

— Multidimensional arrays

— Operator overloading

— Templates

Performance and Applications
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* Primitive scalar types. boolean, double, int, etc.
— implementations will store these on the program stack
— accessisfast -- comparableto other languages

» Objects: user-defined and standard library
— passed by pointer value (object sharing) into functions
— haslevel of indirection (pointer to) implicit
— simple model, but inefficient for small objects

2.6
e

3

true
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Java Object Example

cl ass Conpl ex {
private doubl e real
private doubl e inag;
publ i ¢ Conpl ex(double r, double i) {
real =r; img =i; }
publ i c Conpl ex add(Conpl ex c) {
return new Conpl ex(c.real + real, c.imag + inag);
public doubl e getReal {return real; }
publ i c double getlmag {return imag;}

t

Conpl ex ¢ = new Conplex(7.1, 4.3);
c = c.add(c);
class VisConpl ex extends Complex { ... }
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|mmutable Classes in Titanium

For small objects, would sometimes prefer

— toavoid level of indirection

— pass by value (copying of entire object)

— especially when immutable -- fields never modified
» extendstheidea of primitive valuesto user-defined values

Titanium introducesimmutable classes

— all fieldsarefinal (implicitly)

— cannot inherit from or beinherited by other classes

— needsto have O-argument constructor

Note: considering allowing mutation in future
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Example of Immutable Classes

— Theimmutable complex class nearly the same

i mut abl e cl ass Conpl ex {

new keyword Conpl ex () {real =0; inag=0; }«Zero-argument
constructor required
V\

Rest unchanged. No assignment to
fields outside of constructors.

— Use of immutable complex values
Conmpl ex ¢1 = new Conpl ex(7.1, 4.3);
Conpl ex ¢2 = new Conpl ex(2.5, 9.0);
cl = cl.add(c2);

Similar to structsin C in terms of performance
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Arraysin Java

» Arraysin Java are objects

e Only 1D arraysaredirectly
supported

e Multidimensional arraysare
slow

2d
array

e Subarraysareimportant in AMR (e.g.,
interior of agrid)
— Even C and C++ don’t support these well

— Hand-coding (array libraries) can confuse
optimizer
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Multidimensional Arraysin Titanium

* New multidimensional array added to Java

— One array may be a subarray of another
e eg., aisinterior of b, or aisall even elementsof b

— Indexed by Points (tuples of ints)

— Constructed over a set of Points, called Rectangular
Domains (RectDomains)

— Points, Domains and RectDomains are built-in
immutabl e classes

e Support for AMR and other grid computations
— domain operations: intersection, shrink, border
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Unordered Iteration

* Memory hierarchy optimizations ar e essential
e Compilerscan sometimesdo these, but hard in general

» Titanium adds unordered iteration on rectangular
domains

foreach (pinr) { ... }

— pisaPoaint

— r isaRectDomain or Domain
» Foreach ssimplifies bounds checking as well
» Additional operations on domainsto subset and xform
* Note: foreach isnot a parallelism construct
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Point, RectDomain, Arraysin General
Points specified by a tuple of ints

Point<2> Ib = [1, 1];
Poi nt <2> ub = [ 10, 20];

RectDomains given by 3 points:

— lower bound, upper bound (and stride)
Rect Donai n<2> r = [I b : ub];

Array declared by # dimensions and type
doubl e [2d] a;

Array created by passing RectDomain

a = new double [r];
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Simple Array Example

e Matrix sumin Titanium

Point<2>1b = [1,1];
Poi nt <2> ub = [ 10, 20]; | No array allocation here |
Rect Domai n<2> r = [| b, ub];

double [2d] a |Syntactic sugar |

double [2d] b
double [2d] c

new double [r];
new doubl e [1:10, 1: 20];
new doubl e [l b:ub:[1,1]];

Optional stride |

for (int i =1; i <= 10; i++)
for (int j =1; J <= 20; ]++)
cli,jl =ali,j] + b[i,j];

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 238

119



Naive MatMul with Titanium Arrays

public static void mat Mul (doubl e [2d] a, double [2d] b,
double [2d] c) {
int n =c.domain().mx()[1]; // assumes square
for (int i =0; i <n; i++) {
for (int j =0; j <n; j++) {
for (int k =0; k <n; k++) {
cli,jl +=ali, k] * b[k,j];
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Better MatMul with Titanium Arrays

public static void mat Mul (doubl e [2d] a, double [2d] b,
double [2d] c) {
foreach (ij within c.domain()) {
double [1d] aRowi = a.slice(1, ij[1]);
doubl e [1d] bColj = b.slice(2, ij[2]);
foreach (k within aRow . domain()) {
c[ij] += aRowi [k] * bColj[k];
}
}
}

Current performance: comparableto 3 nested loopsin C

Future: automatic blocking for memory hierar chy (Geoff
Pike's PhD thesis)
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Example: Domain

« Domainsin general are not rectangular

« Built using set operations I L
— union,+ o o o o
— intersection, * 00— ¢ © ¢
— difference, -
. . r+[1,1j
« Exampleisred-black algorithm e oo o— (19
e O o o
Point<2lb = [0, 0]; .
Poi nt <2ub = [6, 4]; @1 tee
Rect Domai n<2r = [Ib : ub : [2, 2]];
e _ _ red
Donmai n<2red = r + (r + [1, 1]); ‘/(7,5)
foreach (p in red) { 0 6°6%°
P e e o o
} .....C..
(0, 0)_,0 e o o
SC2001 Programming With the Distributed
Shared-Memory Model 241

11/12/01

Example using Domains and foreach

» Gauss-Seldel red-black computation in multigrid
void gsrb() {

boundary (phi);

for (domain<2d = res; d != null;

d=(d==red ? black : null)) {
foreach (g in d) = unordered iteration
res(al = ((phi[n(a)] + phi[s(q)] + phi[e(q)] + phi[w(q)])*4
+ (phi[ne(q) + phi[nw(g)] + phi[se(q)] + phi[sw(q)])
20.0*phi[q] - k*rhs[q]) * 0.05;

foreach (q in d) phi[q] += res[q];
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Example: A Distributed Data Structure

» Data can be accessed
acr 0ss processor
boundaries

Proc O Proc 1

| ocal _grids

1
all _grids [N /7] 7] |

Programming With the Distributed
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Example: Setting Boundary Conditions

foreach (I in local _grids.domain()) {
foreach (a in all _grids.domain()) {
| ocal _grids[l].copy(all_grids[a]);

}
}
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Overloading in Titanium

* For convenience, Titanium also provides overloading

cl ass Conpl ex {
private double real;
private doubl e inmag;
publ i ¢ Conpl ex operator+(Conpl ex c) {
return new Conpl ex(c.real + real,
c.img + inmag);

}

Conpl ex c¢1 = new Conplex(7.1, 4.3);

Conpl ex ¢2 = new Conpl ex(5.4, 3.9);

Conplex ¢3 = cl1 + c2;
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Templates

* Many applications use containers:
— E.g., arrays parameterized by dimensions, element types
— Java supports this kind of parameterization through
inheritance
» Only put Object types into contains
* Inefficient when used extensively
e Titanium provides atemplate mechanism like
C++
— Used to build a distributed array package

— Hidesthe details of exchange, indirection within the data
structure, etc.
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Using Templates. Distributed Arrays

tenpl ate <class T, int single arity> public class
DistArray {

Rect Domai n <arity> single rd;
T [arity d][arity d] subMatrices;
Rect Domai n <arity> [arity d] single subDomains;

[* Sets the elenment at p to value */
public void set (Point <arity> p, T value) {
get Hom ngSubMatrix (p) [p] = val ue;
}
}

tenpl ate DistArray <double, 2> single A = new tenplate
Di st Array <double, 2> ([ [0, 0] : [aHeight, awdth]);
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Titanium Execution M oddl
Titanium Memory Model
Support for Serial Programming

Performance and Applications
— Serial Performance on pure Java (SciMark)
— Parallel Applications

Compiler Optimizations
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11/12/01 Shared-Memory Model 248

124



SC2

SciMark Benchmark

Numerical benchmark for Java, C/C++

Five kernels:

FFT (complex, 1D)

Successive Over-Relaxation (SOR)
Monte Carlo integration (MC)
Sparse matrix multiply

dense LU factorization
Resultsarereported in Mflops

Download and run on your machine from:
— http://math.nist.gov/scimark2
— C and Java sources a so provided

Roldan Pozo, NIST, http://math.nist.gov/~Rpozo
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SciMark: Javavs. C
(Sun UltraSPARC 60)
901
801
707
” 601
I mc
= O Java
307
201
101
o-
FFT SOR MC Sparse LU
* Sun JDK 1.3 (HotSpot) , javac -0; Sun cc-0; SunOS 5.7
Roldan Pozo, NIST, http://math.nist.gov/~Rpozo
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SciMark: Javavs. C

(Intel P11 500MHz, Win98)

120

1007

801

601 mC
O Java

407

201

FFT SOR MC Sparse LU
* sunJDK 1.2, javac -0; Microsoft VC++ 5.0, cl -0; Win98

Roldan Pozo, NIST, http://math.nist.gov/~Rpozo

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

251

Can we do better without the VM ?

o PureJavawithaJVM (and JIT)
— Within 2x of C and sometimes better

e OK for many users, even those using high end machines
— Depends on quality of both compilers

e Wecan try to do better using a traditional
compilation model

— E.g., Titanium compiler at Berkeley
» Compiles Java extensionto C
» Does not optimize Java arrays or for loops (prototype)
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Java Compiled by Titanium Compiler

Performance on a Pentium IV (1.5GHz)

450
400
350
300
2 250
200
150 -
100 -

50 -

MFI

Ovwerall FFT SOR MC Sparse LU

Ojava m C (gcc -O6) m Ti @ Ti -nobc
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Java Compiled by Titanium Compiler

Performance on a Sun Ultra 4
70
60
50
2 40
o
LL i
< 30
20
10
0 i
Owerall FFT SOR MC Sparse LU
OJava mC mTi @Ti-nobc
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L anguage Support for Performance

e Multidimensional arrays

— Contiguous storage

— Support for sub-array operations without copying
e Support for small objects

— E.g., complex numbers

— Cdled “immutables’ in Titanium

— Sometimes called “value’ classes
e Unordered loop construct

— Programmer specifies iteration independent

— Eliminates need for dependence analysis — short term
solution? Used by vectorizing compilers.
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HPJ Compiler from IBM

HPJ Compiler from IBM Research
— Moreiraet. a
Program using Array classes which use
contiguous storage
— eg. Ali][j] becomesA.get(i,))
— No new syntax (worse for programming, but better
portability — any Java compiler can be used)

Compiler for IBM machines, exploits hardware
— e.g., Fused Multiply-Add
Result: 85+% of Fortran on RS6000
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Javavs. Fortran Performance

250
]
200+

150+

Mflops

100+

50

M4 TMUL r

0 BSOM

S
ot o e "iLoy,

*|BM RS/6000 67MHz POWER2 (266 Mflops peak) AlX Fortran, HPJC
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Array Performance Issues

Array representation isfast, but access methods can
be dow, e.g., bounds checking, strides

Compiler optimizesthese

— common subexpression elimination

— eliminate (or hoist) bounds checking

— strength reduce: e.g., naive code has 1 divide per dimension for
each array access

Currently +/- 20% of C/Fortran for large loops
Future: small loop and cache optimizations
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Parallel Applications

Genome Application

Heart ssmulation

AMR éelliptic and hyperbolic solvers
Scalable Poisson for infinite domains
Genome application

Several smaller benchmarks: EM 3D,
MatMul, LU, FFT, Join
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MOOSE Application

e Problem: Microarray construction
— Used for genome experiments
— Possible medical applications long-term

e Microarray Optimal Oligo Selection Engine
(MOQOSE)

— A parallé engine for selecting the best oligonucleotide
sequences for genetic microarray testing

— Uses dynamic load balancing within Titanium
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Heart Simulation

* Problem: compute blood flow in the heart
— Modeled as an elastic structure in an incompressible
fluid.
e The “immersed boundary method” due to Peskin and McQueen.
20 years of development in model

« Many applications other than the heart: blood clotting, inner ear,
paper making, embryo growth, and others

— Use aregularly spaced mesh (set of points) for evaluating
the fluid
e Uses
— Current model can be used to design heart valves

— Related projects look at the behavior of the heart during a
heart attack

— Ultimately: real-time clinical work
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Heart Simulation Calculation

Theinvolves solving Navier-Stokes equations

—64"3 was possible on Cray YMP, but 128"3 required for accurate
model (would have taken 3 years).

—Done on a Cray C90 -- 100x faster and 100x more memory
—Until recently, limited to vector machines

- Needs more features:

- Electrical model of the
heart, and details of
muscles, E.g.,

- Chris Johnson
- Andrew McCulloch

- Lungs, circulatory
systems

ibuted
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AMR Poisson

» Poisson Solver [Semenzato, Pike, Coléella]
— 3D AMR <>yt
— finite domain

— variable
coefficients

— multigrid
acrosslevels | evel0
» Performance of Titanium implementation
— Sequential multigrid performance +/- 20% of Fortran
— On fixed, well-balanced problem of 8 patches, each 723
— paralel speedups of 5.5 on 8 processors
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Scal able Poisson Solver

MLC for Finite-Differences by Ballsand Coléella
Poisson equation with infinite boundaries

— arisein astrophysics, some biological systems, etc.
Method is scalable
— Low communication .
Performance on

— SP2 (shown) and t3e
— scaled speedups

— nearly ideal (flat)
Currently 2D and | |
non-adaptive oo

[ ]
o
=3

—e— 129x129/65x65
—m— 129x129/33x33
257x257/129x129|
257x257/65x65

o
Y

IS
IS

Time/ffine-patch-iter/proc

o
N

°
o
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e Chargeis
— 1chargeof
concentric waves
— 2 star-shaped
charges.

e Largesterroris
wherethechargeis
changing rapidly.
Note:

— discretization error
— faint decomposition
error

* Runon 16 procs

$C2001 Pr
11/12/01 Shared-Memory Model

ing With the Distril

Error on High-Wavenumber Problem

9

1.31x10

0

-6.47x10°°
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AMR Gas Dynamics

» Developed by McCorquodale and Colella

» 2D Example (3D supported)

— Mach-10 shock on solid surface
at oblique angle

* Future: Self-gravitating gas dynamics package
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An Irregular Problem: EM3D

Maxwells Equations on an Unstructured 3D Mesh: Explicit Method

Irregular Bipartite Graph of varying degree
(about 20) with weighted edges

o

o

e
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e
s
]
o
Bt
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oy
G
55

@ H
® i
—» B . L L
Basic operation is to subtract weighted sum of
neighboring values
for all E nodes
for all H nodes
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Unstructured Mesh Kerndl

« EM3D: Relaxation on a 8
3D unstructured mesh 7
6
» Speedup on Ultrasparc 5
SMP 4
M em3d
3
o Simplekernel: meshnot >
partitioned. 1
ol
1 2 4 8
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Calling Other Languages

e Wehave built interfacesto
— PETSc: scientific library for finite element applications
— Metis: graph partitioning library
— KeLP: starting work on this
e Two issueswith cross-language calls
— accessing Titanium data structures (arrays) from C
* possible because Titanium arrays have same format on inside
— having a common message layer
« Titaniumis built on lightweight communication
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|mplementation Status

o Strategy

— Titaniuminto C

— Solaris or Posix threads for SMPs

— Lightweight communication for MPPs/Clusters

« Active messages, LAPI, shmem, MPI, UDP, others...

o Status: Titanium runson

— Solarisor Linux SMPs, clusters, CLUMPS

— Berkeley NOW & Berkeley Millennium clusters

— Cray T3E (NERSC and NPACI)
— IBM SP2/SP Power3
— SGlI Origin 2000
$C2001 Programming With the Distributed
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Outline

Titanium Execution M odel

Titanium Memory M odel

Support for Serial Programming
Performance and Applications

Compiler Optimizations

— Local pointer identification (LQI)

— Overlap of communication (Split-C experience)

— Preserving the consistency model
 Cycle detection: parallel dependence analysis
e Synchronization analysis: parallel flow analysis
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Local Pointer Analysis
o Compiler can infer many uses of local
Effect of LQI
:
. (B ==

e Data structures must be well partitioned
SC2001 Programming With the Distributed
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Split-C Experience: Latency Overlap

* Titanium borrowed ideas from Split-C
— global address space
— SPMD parallelism

» But, Split-C had non-blocking accesses built in to tolerate
network latency on remoteread/write
int *global p;
X = *p; [* get */
*p 1= 3; [* put */

sync; [* wait for my puts/gets */
» Also one-way communication
*PD - X /[* store */

all _store_sync; /* wait globally */

Conclusion: useful, but complicated
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» Tuning affects application performance
1.2 +
1 4
o 0.8 T //
T
]
g o6 T
g. -
0.4 4 —=— em3d.simple
f —=— bundle.unopt
—=— pbundle.opt
0.2 + —=— em3d.get
—=— em3d.bulk
0 t t t {
[0} 10 20 30 40
% Remote
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Consistency Model

» Titanium adoptsthe Java memory consistency
model

e Roughly: Accessto shared variablesthat are
not synchronized have undefined behavior.

» Use synchronization to control accessto shared
variables.
— barriers
— synchronized methods and blocks
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Parallel Optimizations

e Two new analyses

— synchronization analysis: the parallel analog to
control flow analysisfor seria code [Gay & Aiken]

— shared variable analysis: the paralel analog to
dependence analysi's [Krishnamurthy & Yelick]
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Sources of Memory/Comm. Overlap

Would like compiler to introduce put/get/store.
Hardware also reorders
— out-of-order execution
— write buffered with read by-pass
— non-FIFO write buffers
— weak memory modelsin general
Softwar e already reorderstoo
— register allocation
— any code motion
System provides enforcement primitives
— eg., memory fence, volatile, etc.
— tend to be heavy wait and with unpredictable performance

Can the compiler hideall this?
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Semantics. Sequential Consistency

* When compiling sequential programs:

expr2;

expri; y

expr 2; -

Valid if y not in expr1l and x not in expr2 (roughly)
* When compiling parallel code, not sufficient test.

X

Yy

exprl;

Initially flag = data = 0
Proc A Proc B
data = 1; while (flag!=1);
flag = 1; ... = ...data...;
o oo et
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Cycl e Detection: Dependence Analog

Processorsdefine a “ program order” on accesses from the
same thread

==> Pjstheunion of thesetotal orders

* Memory system define an “access order” on accessesto the
samevariable

==p A isaccessorder (read/write & write/write pairs)

write data  read flag

I X1

write flag  read data

» A violation of sequential consistency iscyclein PU A.
* [ntuition: time cannot flow backwards.
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Cycle Detection

» Generalizesto arbitrary numbers of
variables and processors

write x w read y
read y write x

» Cyclesmay bearbitrarily long, but it is
sufficient to consider only cycleswith 1 or 2
consecutive stops per processor
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Static Analysis for Cycle Detection

» Approximate P by the control flow graph
» Approximate A by undirected “ dependence’ edges

* Letthe“delay set” D beall edgesfrom P that are part of

aminimal cycle

write z read x
l write y read x l
read y write z

* Theexecution order of D edge must be preserved; other P
edges may bereordered (modulo usual rulesabout serial

code)
» Synchronization analysisalso critical [
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Communication Optimizations

Implemented in subset of C with limited pointers[Krishnamurthy, Y elick]

Experiments on the NOW; 3 synchronization styles

1.0+
§ I unoptimized
N .75 |
= B without
= synchronization
5 5 4 analysis
£ I split-phase
Q.
E
|_

One-way

Ocean EM3D Cell Cholesky  Health

Future: pointer analysisand optimizationsfor AMR [Jeh, Yélick]
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Parallel Programming Using A
Distributed Shared Memory Model

Summary

One Model

 Distributed Shared Memory
— Coding simplicity
— Recogni zes system capabilities
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Three Languages

» Small changesto existing languages
—ANSI C 1 UPC
— F90 0 Co-Array Fortran
—Javall Titanium

» Many implementations on the way
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For More Info

« UPC

— http://upc.gwu.edu
* Co-Array Fortran

— http://www.co-array.org
e Titanium

— http://www.cs.berkel ey.edu/Research/Projectg/titanium
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